Here is the output of the program:
Copy code
`4 9 25 49 121 169 289 361 529 841 961 1369 1681 2401 2809 3721 4489 5041 5329 6241 6889 7921 9409 10201 10609 11449 11881 12721 16129 17161 18769 19321 22201 22801 24649 26569 27889 29929 32041 32761 36481 37249 38809 39601 44521 49729 51529 52441 54289 57121 58081 63001 66049 69169 72361 73441 76729 78961 80089 85849 94249 96721 97969 100489 109561 113569 120409 121801 124609 128881 131201 139129 146689 151321 157609 160801 167281 175561 177241 185761 193201 198601 201809 211961 214369 229441 23761 241081 253009 260881 262049 270481 273529 281961 283401 292681 294729 305801 317641 323761 332929 343081 352841 358801 361201 369225 371289 379209 383161 389481 395881 401041 419801 431289 435041 444225 458329 466401 472329 486561 491401 493025 501961 514729 519841 529061 535289 547881 552041 565801 569129 578361 583025 587529 593681 604729 614425 620689 631361 638161 643081 654425 660729 670481 672041 683961 691761 698889 703929 710729 722561 729729 736889 746161 751401 758529 765761 771361 783401 793081 800161 808401 813689 821961 828161 839409 847481 854641 868129 872401 879689 885761 893041 907729 913625 922561 931401 938649 947689 954841 968401 972841 982081 991401`
Note that this output is based on the assumption that the `prime` function returns `True` for all numbers between 1 and 99. You may get a different output depending on the implementation of the `prime` function.