The course is designed for students who seek to gain a solid understanding of Bayesian statistics and how to use it to fuse information from different sensors. We emphasize object positioning problems, but the studied techniques are applicable much more generally. The course contains a series of videos, quizzes and hand-on assignments where you get to implement many of the key techniques and build your own sensor fusion toolbox.
The course is self-contained, but we highly recommend that you also take the course ChM015x: Multi-target Tracking for Automotive Systems. Together, these courses give you an excellent foundation to tackle advanced problems related to perceiving the traffic situation around an autonomous vehicle using observations from a variety of different sensors, such as, radar, lidar and camera.
Syllabus
Section 1 - Introduction and Primer in statistics
Section 2 - Bayesian statistics (Week 1)
Section 3 - State space models and optimal filters (Week 1)
Section 4 - The Kalman filter and its properties (Week 2-3)
Section 5 - Motion and measurements models (Week 2-3)
Section 6 - Non-linear filtering (Week 4) Section 7 - Particle filter (Week 5)